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Abstract

In many problems of multiscale modeling, we are interested in capturing the
macroscale behavior of the system with the help of some accurate microscale
models, bypassing the need of using empirical macroscale models. This paper
gives an overview of the recent efforts on establishing general strategies for de-
signing such algorithms. After reviewing some important classical examples,
the Car-Parrinello molecular dynamics, the quasicontinuum method for mod-
eling the deformation of solids and the kinetic schemes for gas dynamics, we
discuss three attempts that have been made for designing general strategies:
Brandt’s renormalization multi-grid method (RMG), the heterogeneous multi-
scale method (HMM) and the “equation-free” approach. We will discuss the
relative merits and difficulties with each strategy and we will make an attempt
to clarify their similarities and differences. We end with some perspectives
about this kind of approach.
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1 Introduction

In many areas of science and engineering, we face the problem that on one hand, we
do not have an sufficiently explicit and accurate macroscopic model for the macroscale
quantities that we are interested in, but on the other hand, we do have at our disposal
a microscopic model with satisfactory accuracy – the difficulty being that solving the
full microscopic model is far too inefficient. Most well-known examples include:

1. In molecular dynamics, we need an accurate force field which we often do not
have. Instead, we have an accurate electronic structure model such as density
functional theory.

2. When modeling the dynamics of real gases, we need the equation of state which
we often do not have. Instead, we have an accurate kinetic model.

3. In continuum models of complex fluids, we need a constitutive relation which
we often do not have. Instead, we have an accurate atomistic model, such as
molecular dynamics. The same situation exists for solids.

Many different methods have been developed to deal with such problems. Most
well-known among these methods are the Car-Parrinello molecular dynamics [4], the
quasicontinuum method for studying the deformation of solids [43, 31] and the kinetic
scheme for studying gas dynamics [8]. All these methods share the following features:

1. They allow us to model the macroscale quantities of interest, by coupling with
a microscale model instead of using ad hoc macroscale models.

2. They make use of scale separation, by either modifying some small parameters
in the problem (as is done in the Car-Parrinello method), or by solving the
microscopic model on small spatial-temporal domains (as in the Knap-Ortiz
version of the quasicontinuum method [31] and the Prendergast-Xu version of
the kinetic scheme [46]).

The success of these methods and the success of more traditional multiscale meth-
ods such as the multi-grid method has given impetus to establishing some general
framework for multiscale methods [3, 9, 11, 27]. The hope is that as was the case
of finite difference and finite element methods for solving differential equations, the
general framework might lead to general designing principles for multiscale methods
and general guidelines for carrying out error analysis. In [3], Achi Brandt reviewed
a general strategy for extending the multi-grid method to multi-physics problems
and problems with scale separation. The new strategy in principle allows the use of
atomistic models such as Monte Carlo methods or molecular dynamics at the finest
level. This strategy does not require explicit macroscale models to begin with. In
fact, Brandt remarked that one might be able to construct the effective macro model
from the data accumulated during the computation. In addition, one can exploit
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scale separation by restricting the size of the spatial-temporal domain over which the
microscale models are simulated. Brandt remarked that “few sweeps are enough, due
to the fast CMC (conditional Monte Carlo) equilibration. This fast equilibration also
implies that the interpolation can be done just over a restricted subdomain, serving
as window: In the window interior fine-level equilibration is reached.” As in tradi-
tional multi-grid methods, RMG follows an “interpolation-equilibration-restriction”
strategy, except that in the “equilibration” step, microscopic models are used. In
addition, the macro and micro grid sizes might be very far apart.

The philosophy of the “equation-free” approach is very similar, except for an
added “extrapolation step” for the time evolution of the macro variables, making
it a “lifting - equilibration (run microscopic model) - restriction - extrapolation”
procedure. In space, the “equation-free” approach also makes use of the fact that the
microscopic simulation can be done on small windows, or the “teeth” as it is called
in the “gap-tooth” scheme. The gaps in between are filled in using interpolation.

In the heterogeneous multiscale method [9, 11], one begins with an assumption
about the form of the macro model (not the detailed expression), based on which
one selects a macro solver for the problem. Due to the fact that the macro model is
not explicitly known, the microscale model is used during the computation to supply
whatever data that are missing from the macro model. Scale separation is exploited
by observing that in the data estimation step, the computational domain for the
microscopic model is totally decoupled from the physical domain for the macroscale
solver, and it only has to be large enough to guarantee the required accuracy for the
data. For the same reason, there is no direct communication between the different
microscopic simulations that are carried out for estimating data at different locations
at the macroscale computational domain. All communications are done through
the macro-solver. This observation motivated the construction of the fiber bundle
structure for the multiscale problems handled by HMM [12].

There are obvious similarities between all these approaches. It is interesting to
see whether they are different and how different they are. We will make an attempt
to address these questions in the present paper.

Before ending the introduction, let us remark that the most popular way of incor-
porating microscale information to macroscale models is to use sequential coupling or
precomputing: The missing parameters or coefficients or a predetermined macroscale
model are computed beforehand using the microscopic model and standard numeri-
cal techniques are then used to solve the macroscale model. For example, for elliptic
homogenization problems, we know that the macroscale model should be of the form:

∇(A(x) · ∇)U(x) = f(x)

But we usually do not know the coefficients A. This, however, can be computed
beforehand using the microscale model. This is a very popular strategy in many
areas of scientific modeling. This paper will focus mostly on concurrent coupling
techniques [1].

4



2 Examples of Multiscale Methods

2.1 The Car-Parrinello molecular dynamics

In Car-Parrinello molecular dynamics (CPMD) [4], the macroscale quantities of in-
terest are the positions and velocities f the nuclei, which obey Newton’s second law

MIR̈I = −∇RI
V

Here MI and RI are respectively the mass and position of the I-th atom. The
unknown component of the model is the inter-atomic potential V or the force field
−∇RI

V . We assume that we have at our disposal a sufficiently accurate electronic
structure model, such as the density functional theory model. Since the atoms interact
via Coulomb forces, we should be able to compute the force on the nuclei once we
know the electron structure. Car and Parrinello devised a very elegant way of doing
this, i.e. coupling molecular dynamics with electronic structure models [4].

First some remarks about the electronic structure model. In principle, we could
start with the quantum many-body problem which would be the true first principle.
In practice, one often makes various one-electron approximations. Most successful
among these approximate models is the Kohn-Sham density functional theory [34],
in which the N -body wavefunction is replaced by the Kohn-Sham orbitals {ψn}N

n=1

that minimize the energy functional

EKS{RI , ψn} =
N

∑

n=1

∫

ψ∗
n(r)(−1

2
∆)ψn(r)dr + J [ρ] + Exc[ρ] (1)

where ρ(r) =
∑N

n=1 |ψn(r)|2 is the electron density,

J [ρ] =
1

2

∫ ∫

(ρ(r1) −m(r1))(ρ(r2) −m(r2))

|r1 − r2|
dr1dr2

Exc is the exchange-correlation functional, usually given by some empirically derived
local functional of ρ. m(r) is the potential that represents the nuclei. Usually it takes
the form:

m(r) =
∑

I

ma
I(r − RI)

where ma
I is the potential for the I-the nucleus. The electronic structure of a material

or a molecule can be obtained by minimizing the functional above, subject to the
constraint that the orbitals are orthonormal

∫

ψ∗
n(r)ψm(r)dr = δmn (2)

Going back to the original problem, namely the dynamics of the nuclei, the most
obvious idea for coupling nuclei dynamics with electronic structure analysis is via
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the Born-Oppenheimer approximation: Since the nuclei is much heavier than the
electrons, one may assume that the electronic structure is in the ground state given
by the nuclei. Under this approximation, the electronic structure is slaved by the
state of the nuclei:

MIR̈I = −∇RI
EKS{RI , ψn} (3)

{ψn, n = 1, 2, · · · , N} = argminEKS (4)

A natural way of implementing such a Born-Oppenheimer dynamics is:

1. Select an integrator for the molecular dynamics equation (3), for example, the
Verlet scheme.

2. Calculate the force on the nuclie by solving the electronic structure problem
(4) using some iterative method. To solve the electronic structure problem at
each time step, one has to: (A) initialize the iterative procedure, (B) run the
iterative procedure until it converges and then (C) compute the force on the
nuclei, i.e. the right hand side of (3).

We will see later that such a procedure is very much reminiscent of the heterogeneous
multiscale method.

Instead of following strictly the Born-Oppenheimer dynamics, Car and Parrinello
developed a much more seamless approach. They defined the extended phase space for
both the nuclei positions and the Kohn-Sham orbitals, and introduced the extended
Lagrangian:

L{RI , ψn, ṘI , ψ̇n} =
1

2

∑

I

MI |Ṙ|2I +
1

2

∑

n

µ

∫

ψ̇2
n(r)dr −EKS{RI , ψn} (5)

where µ is the “mass” for the Kohn-Sham orbitals. Car-Parrinello molecular dynamics
(CPMD) is obtained by following standard procedures in classical mechanics for this
this Lagrangian:

MIR̈I = −∇RI
EKS (6)

µψ̈n = − δE

δψ∗
n

+
∑

m

Λnmψm

Here the Λm,n’s are the Lagrange multipliers for the orthogonality constraint (2).
This formulation has the advantage that the electrons and nuclei are treated in the
same footing.

So far we have only considered the multi-physics aspect of CPMD. There is also a
multi-scale aspect, and that is associated with the disparity between the time scales
for the nuclei and the electrons. The natural choice for the value of the parameter µ
should be the value of the electron mass, which is at least three orders of magnitude
smaller than the nuclei mass. However, since we are only interested in the dynamics

6



of the nuclei, we may use other value of µ as long as we still obtain an accurate enough
approximation for the dynamics of the nuclei. The Born-Oppenheimer approximation
means setting the value of µ to 0. Car and Parrinello adopted an opposite strategy,
which is often more convenient in practice, namely increasing the value of µ to some
fictitious value much larger than the electron mass. The actual value is determined
by the accuracy requirement.

CPMD is still the most compelling example of concurrent coupling techniques:
Since the inter-atomic potential is in principle a function of all the atomic positions,
it is unfeasible to obtain this function by precomputing (i.e. sequential coupling), and
it has to be calculated “on-the-fly”. Many other examples in this category (which are
called type B problems in [11]) do not share this feature, particularly in light of the
efficient sequential coupling techniques proposed in [21].

2.2 The quasicontinuum method

Our next example is the (local) quasicontinuum (QC) method [43, 31]. In this example
our interest is on the macroscale deformation of solids. This can be done by solving
a variational problem for the displacement field u,Ω → R3, where Ω is the domain
that defines the undeformed position of the solid:

min

∫

Ω

(W (∇u(x)) − f(x) · u(x)) dx (7)

f is the applied force. This requires knowing W , the stored energy density. Tradi-
tionally W is obtained from empirical considerations. The main purpose of QC is
to bypass such empirical strategies, and instead rely on some sufficiently accurate
atomistic models.

To begin with, QC starts with a piecewise linear finite element space on a coarse
mesh. The mesh is generated by selecting the so-called representative atoms (rep-
atom), identified by {xα} via their undeformed positions. The displacement of the
rest of the atoms are determined by the trial functions in the finite element space.
The key question is how to compute the energy of a trial function. Two different
approaches have been proposed to deal with this problem.

The first is to use the so-called Cauchy-Born rule. Since the deformation gradient
A = ∂y

∂x
is uniform within each element, one may approximate the energy on each

element using the energy density of a crystal which is uniformly deformed with the
deformation gradient A on that element. This is the Cauchy-Born rule. Denote by the
E(A) the strain energy density obtained using the Cauchy-Born rule, the approximate
total energy is then obtained by summing over the elements,

Etot ≈
Ne
∑

k=1

E(Ak)|Ωk| (8)

where Ne is the number of elements, |Ωk| denotes the volume of the k-th element.
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The second is to compute the energy associated with each representative atoms
by performing direct summation of the interatomic potential over a small cluster of
atoms around the rep-atom. The total energy is computed approximately using:

Etot ≈
Nrep
∑

α=1

nαEα (9)

where Eα is the approximate energy associated with the rep-atom indexed by α, {nα}
is a set of suitably chosen weights. Roughly speaking, nα should be the number of
atoms xα is supposed to represent.

To compute Eα, one reconstructs the positions of atoms in a small cluster that sur-
rounds xα, and then perform direct summation in this small cluster (see the attachd
figure). This is the Knap-Ortiz version of the quasi-continuum method [31].

To summarize, the Knap-Ortiz QC procedure works as follows:

1. Given a candidate trial function in the finite element space, use interpolation
to find the position of the atoms in a small cluster around each rep-atom.

2. Using the atomistic model to find the force acting on the rep-atoms by summing
the interaction force over the small clusters of atoms.

3. Update the trial function.

Figure 1: Schematic illustration of the cluster summation rule in QC (courtesy of M.
Ortiz). Only atoms in the small cluster need to be visited during the computation.

We have only discussed one component (the simpler one) of QC. Another impor-
tant component of QC is to use adaptive mesh refinement to resolve the atomistic
features near defects (type A problems). Since this is not the kind of questions dis-
cussed in this paper, we will omit that part.
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2.3 The kinetic scheme

Our next example is the derivation of numerical schemes for gas-dynamics that uses
only the kinetic model. Such schemes are called kinetic schemes (see for example
[40, 36, 35, 46, 8], see also the related work on lattice Boltzmann methods [5, 41]).
Here the macroscopic quantities of interest are the density, pressure and velocity fields
of the gas. We will base our construction on a kinetic model, such as the Boltzmann
equation:

∂tf + v · ∇f =
1

ε
C(f) (10)

where f is the one-particle phase-space distribution function, which is also our mi-
croscale state variable; C(f) is the collision kernel; ε is the mean-free path between
collisions in the gas. The macroscale state variables U are the usual hydrodynamic
variables of mass, momentum and energy densities, which are related to the microscale
state variable f by:

ρ =

∫

fdv, ρu =

∫

fvdv, E =

∫

f
|v|2
2
dv. (11)

From the Boltzmann equation, we have:

∂t





ρ
ρu
E



 + ∇ · F = 0 (12)

where

F =

∫

R3

f





v

v ⊗ v
1
2
|v|2v



 dv (13)

When ε ≪ 1, the distribution function f is close to local equilibrium states, or the
local Maxwellians,

M(x,v, t) =
ρ(x, t)

(2πθ(x, t))3/2
exp

(

−(v − u(x, t))2

2θ(x, t)

)

(14)

with θ being the absolute temperature.
We will focus on the one-dimensional case. We first divide the computational

domain in the physical space into cells of size ∆x. We will denote by xj the center
position of the j-th cell, and xj+1/2 the cell boundary between the j-th and j + 1-th
cells. For a first order method, we represent the solution as piece-wise constants, i.e.

Uj = (ρj , ρjuj, Ej), x ∈ (xj−1/2, xj+1/2]
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The finite volume scheme takes the form:


























ρn+1
j − ρn

j +
∆t

∆x

(

F
(1)
j+1/2 − F

(1)
j−1/2

)

= 0,

(ρu)n+1
j − (ρu)n

j +
∆t

∆x

(

F
(2)
j+1/2 − F

(2)
j−1/2

)

= 0,

En+1
j − En

j +
∆t

∆x

(

F
(3)
j+1/2 − F

(3)
j−1/2

)

= 0

(15)

where Fj+1/2 = (F
(1)
j+1/2, F

(2)
j+1/2, F

(3)
j+1/2)

T is the numerical flux at the cell boundary
xj+1/2.

The fluxes Fj+1/2 will be computed by solving the kinetic equation using the
following three-step procedure:

1. Initialize the kinetic equation using the local Maxwellian with parameters (ρ, u, θ)
given by Uj .

2. Solve the kinetic equation locally around cell boundaries where the values of
the fluxes are needed.

3. Using (13) to compute the numerical fluxes.

This gives rise to the following expression for the numerical fluxes:

Fj+1/2 = F+
j+1/2 + F−

j+1/2, with F±
j+1/2 =

∫

R±

f(x∓j+1/2, v, t)





v
v2

1
2
v3



 dv, (16)

F± =













ρuA±(S) ± ρ

2
√
πβ

B(S)

(p+ ρu2)A±(S) ± ρu

2
√
πβ

B(S)

(pu+ ρue)A±(S) ± ρ

2
√
πβ

(
p

2ρ
+ e)B(S)













(17)

where

A± =
1 + erf(S)

2
, B(S) = e−S2

, S =
u√
2RT

, p = ρRT.

This is the simplest kinetic scheme. The schematic is shown in Figure 2.

3 The Renormalization Multi-grid Methods

Given the success of these different multiscale methods, it is natural to ask whether
we can formulate general designing principles or general guidelines. In the case of
solving differential equations, such general designing principles have proved to be very
useful, e.g., for finite difference and finite element methods. In the past several years,
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t ξ ξ ξ

ξ ξ ξ

ξ ξ ξ∆t

x

∆x

Figure 2: Schematics for the derivation of kinetic scheme: A finite volume method is im-

posed in the x − t domain, and the kinetic equation is solved (e.g. analytically) over the

shaded region to give the fluxes needed in the finite volume method. The ξ axis (which

should have been v) indicates the extra velocity variable in the kinetic model, which repre-

sents the microstructure for the present problem.

several attempts have been made on constructing general framework for multiscale
methods. In the following, we will discuss some examples of such general strategies,
the extension of multi-grid method by Brandt, the heterogeneous multiscale method,
and the “equation-free” approach.

Please note that what we call the “renormalization multi-grid” here should be
what Brandt is now calling “systematic upscaling”. “Renormalization multi-grid” is
a term that Brandt used earlier. In any case, the object we will discuss below is found
in Brandt’s review article [3].

3.1 The basic philosophy

One of the first attempts for constructing a general framework for multiscale mod-
eling was the extension of the multi-grid method by Achi Brandt during the 1990’s.
In its original form [2, 28], multi-grid method is an efficient way of solving the alge-
braic equations obtained from discretizing partial differential equations (PDE). The
objective was to find accurate solutions of the PDE. Brandt extended this traditional
notion of multi-grid method in a number of directions:

1. The models or processes at the different scales may be different in nature. For
example, the process at the finest scale may be discrete, modeled by kinetic
Monte Carlo methods or molecular dynamics, whereas at the macroscale, the
process may be continuous.
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2. Instead of resolving the detailed processes at the finest scale, in RMG, we are
often interested only in capturing the large scale behavior. This is particularly
useful in cases when closed-form macroscale models are not available. In that
case, one may be able to reconstruct the effective macroscale model at the
end of the such multiscale computation: “At sufficient coarse level, this entire
algorithm effectively produces macroscopic ‘equations’ for the simulated system
.... This can yield a macroscopic numerical description for the fluid even for
those cases where the traditional derivation of closed-form differential equations
is inapplicable.”

3. One may take advantage of the scale separation by limiting the microscopic sim-
ulation at the fine scale to small spatial-temporal domains, As was remarked
by Brandt: “few sweeps are enough, due to the fast CMC equilibration. This
fast equilibration also implies that the interpolation can be done just over a
restricted subdomain, serving as window: In the window interior fine-level equi-
libration is reached.”

3.2 The general strategy

Brandt described a general strategy implemented in the spirit of the multi-grid
method. Each macro cycle consists of the following steps:

1. Interpolation: The current values of the local macro state variables are used to
initialize the micro model.

2. Equilibration: Iterate the microscale model over small windows for a few sweeps.

3. Restriction (projection): Project the micro variables back to the macro grid.

Brandt also described applications to many different areas, including electronic struc-
ture analysis, solving integro-differential equations, modeling high frequency wave
propagation, Monte Carlo methods in statistical mechanics, complex fluids and im-
age processing.

4 The “Equation-free” Approach

4.1 The main components of the “equation-free” approach

The “equation-free” approach is another framework to address the same kind of
questions based on a similar philosophy. It consists of a set of techniques includ-
ing coarse bifurcation analysis, projective integrators, the gap-tooth scheme and the
patch dynamics. At an abstract level, “equation-free” is built on a three-stage “lift-
evolve-restrict” coarse time-stepper procedure [27] very similar to the “interpolate-
equilibrate-restrict” procedure in RMG: Given a macroscopic state, U(t), at some
time t, the coarse time-stepper consists of the following basic elements [27]:
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1. Lift: Transform the initial data through lifting to one or more consistent mi-
croscopic realizations.

2. Evolve: Use the microscopic simulator (the detailed time-stepper) to evolve
these realizations for the desired short macroscopic time τ , generating the
value(s) u(τ, t).

3. Restrict: Obtain the restriction of u and define the coarse time-stepper solution
as T τ

c U(t) = Mu(τ, t).

Here M is the restriction operator that maps micro-state variables to macro-state
variables.

Computational savings come from exploiting scale separation in the problem using
interpolation and extrapolation techniques.

4.2 Coarse projective integration

In coarse projective integrators, one generates an ensemble of microscopic solutions
for short times, by running the microscopic solver with an ensemble of initial data
that are consistent with the current macro-state. One computes the average values of
the coarse variables over this ensemble. The time derivatives for the coarse variables
are computed using these averaged values and these coarse time derivatives are used
to extrapolate the coarse variables over a much larger time step. “The dynamic in-
formation in the replica runs ψi(t;ψ0) can also be used to extrapolate toward longer
times. Instead of propagating each of the replicas, we extrapolate the averaged posi-
tion of the slow variable, for instance linearly (exploiting regularity of the expected
coarse dynamics with time),

ψ(t′;ψ0) ≈ ψ(t;ψ0) +
t′ − t

t
[ψ(t;ψ0) − ψ0]

A long ‘projective step’ t′ − t is then effected by reinitializing an ensemble at the
extrapolated value; this is the simplest ‘projective forward Euler method’ ” (from
[30]). In the same way, one can construct coarse molecular dynamics.

More specifically, the projective integration procedure is as follows.

1. At each macro time step, say the n-th time step, use the microscale model to
obtain an approximation of the time derivative of the coarse variables by running
the microscale model for short period of time δt, and (ensemble) average the
micro-states obtained. Denote the result by Ũn

δt.

2. Extrapolate to obtain the numerical solution for the coarse variable at the next
time step, {Un+1

j }:

Un+1 = Un + ∆t
Ũn

δt − Un

δt
(18)
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or more generally:

Un+1 = Un + ∆t
Ũn

δt − Ũn
αδt

(1 − α)δt
(19)

where α is some numerical parameter between 0 and 1.

This is also the basis for the coarse molecular dynamics developed in [30].
In the case of stiff ordinary differential equations (ODEs), for which projective

integrators were initially developed [22], one would simply solve the whole system with
say, forward Euler for a number of steps using small time steps that resolve the fast
component of the dynamics, compute the time derivative by taking divided difference
of the last two steps, and use the result to extrapolate the whole system over a macro
time step. There is no need to distinguish slow and fast variables explicitly. Higher
order methods can be constructed using higher order extrapolation, as described
in [22]. In this context, very similar ideas were proposed in [20]. In general, the
extrapolation step is only done for the macro variables.

Figure 3: Schematic illustration of the projective integration scheme

4.3 Gap-tooth scheme

The basic idea of the gap-tooth scheme is to “use the microscopic rules themselves, in
smaller parts of the domain and, through computational averaging within the subdo-
mains, followed by interpolation, we evaluate the coarse field U(t, x), the timestepper,
and the time derivative field over the entire domain” ([27], page 729).

“Given a finite dimensional representation {UN
j } of the coarse solution (e.g. nodal

values, cell averages, spectral coefficients, coefficients for finite elements or empirical
basis functions) the steps of the gap-tooth scheme are the following.

1. Boundary conditions. Construct boundary conditions for each small box based
on the coarse representation {UN

j }.
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2. Lift. Use lifting to map the coarse representation {UN
j } to initial data for each

small box.

3. Evolve. Solve the detailed equation (3.1) for time t ∈ [0, τ ] in each small box
y ∈ [0, h] ≡ [xj − h/2, xj + h/2] with the boundary conditions and initial data
given by steps (1) and (2).

4. Restrict. Define the representation of the coarse solution at the next time level
by restricting the solutions of the detailed equation in the boxes at t = τ .”
([27], page 730).

An interesting application of the gap-tooth scheme is presented in [23] in which a
particle model was used to capture the macroscale dynamics of the viscous Burgers
equation. This is done by performing particle simulation on an array of small boxes
(teeth) together with a macroscopically interpolative mechanism for communication
between the boxes at the particle level. Particles exiting one box are distributed into
neighboring boxes and the original box. In this way, the microscopic simulations on
the different boxes are all coupled and together they mimic a microscopic simulation
performed over the whole domain.

4.4 Patch dynamics

Patch dynamics is a combination of the projective integrators and the gap-tooth
scheme. It consists of the following (from [27], page 739):

1. Short time steps. Repeat the gap-tooth time stepper, points (d) through (g), a
few times. (Compute patch boundary conditions, lift to patches, evolve micro-
scopically, restrict).

2. Extrapolate. Advance coarse fields a long time step into the future through
projective integration. This first involves estimation of the time-derivatives for
the coarse field variables, using the successively reported coarse fields in (h)
followed by a large projective step, as discussed in Section 2.2.

A detailed analysis of the “equation-free” approach is somewhat complicated by
the fact it has been continuously evolving. What began as an “extrapolation in time,
interpolation in space” strategy [33] has gradually evolved to a “macro solver- micor
solver - data estimator” strategy [24], which is the hallmark of HMM, as we will see
below.
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Figure 4: Schematics of HMM framework

5 The Heterogeneous Multiscale Methods

5.1 The main components of HMM

We now turn to the framework of the heterogeneous multiscale method (HMM). The
general setting is as follows. We are given an accurate microscale model, which can
be abstractly written as

f(u, b) = 0 (20)

where u is the microscopic state variable and b is the set of constraints, such as
boundary conditions. We are not interested in the microscopic details of u, but
rather the macroscopic state of the system which we denote by U . Using our existing
knowledgement about the problem, we make an assumption about the form of the
macroscopic model:

F (U,D) = 0 (21)

where D stands for the macroscopic data that are necessary to complete the model.
For example, in models of complex fluids, D might be the stress.

The goal of HMM is to compute U using the assumed form of F together with
the microscale model. It consists of two main components.

1. A macroscopic solver. Even though the macroscopic model is not available
completely, we can still use whatever knowledge that is available on the form
of F to select a suitable macroscale solver.

2. Estimating the missing macroscale data D using the microscale model. This is
typically done in two steps:

(a) Constrained microscale simulation: At each point where some macroscale
data is needed, perform a series of microscopic simulations which are con-
strained so that they are consistent with the local macroscopic state, i.e.
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b = b(U). When formulating the constraints, one also uses the assumption
about the form of the macroscale model, i.e. the form of F .

(b) Data processing: Use the microscale data generated from the microscopic
simulations to extract the needed macroscale data.

The significance of the choosing the right macroscale solver can be appreciated
from the following:

1. Even if we know completely the macroscale model in closed form, it may still be
a non-trivial matter to select a suitable numerical algorithm for the macroscale
model.

2. More importantly, the macroscale solver allows us to target the specific form of
the macroscale model. If we write the macroscale model in the form:

Ut = F (U)

the “equation-free” approach is based on computing Ut. It specifically makes
the point of avoiding the computation of F [] or using the specific structure of F
. In the case when the macroscale model is a deterministic ODE, knowing Ut is
equivalent to knowing F , and this difference between HMM and “equation-free”
may not be that significant. This is also the reason why “equation-free” can
work in this case. But if F has a more interesting structure, e.g. F might be the
sum of a drift term and a noise term for the case when the macroscale model
is a stochastic ODE, or F might represent a hyperbolic system, then thinking
about computing Ut alone may not be sufficient. One needs to think about the
whole macroscale solver. In the case of stochastic ODEs, this means that one
has to treat the drift and diffusion terms separately. In the case of hyperbolic
systems, this means that one has to use stable schemes.

Let us take the example of complex fluids in which the macroscale model is a
continuum model for the macroscale velocity field U in the form of:

∂tU + (U · ∇)U + ∇P = ∇ · τ

∇ ·U = 0

These are simply statements of conservation of momentum and mass. The unknown
data is the stress τ . We will assume that

τ = τ(∇U)

This key assumption will be used in formulating constraints on the microscale model.
Let us say that the micro model is a molecular dynamics model:

mir̈i = fi, i = 1, 2, · · · , N (22)
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Here mi, ri are respectively the mass and position of the i-th particle, fi is the force
acting on the i-th particle.

Given that the macroscale model is in the form of an incompressible fluid equation,
we will use the projection method as the macro-solver [6]. In the implementation of
the projection method, we will need the values of τ at the appropriate grid points.
These are the data that need to be estimated. Since we have assumed that τ is only a
function of ∇U, we will constraint the molecular dynamics so that the average strain
rate is given by the value of ∇U at the relevant grid point. In general, implementating
such constraints is the most difficult step in HMM. For the present example, a possible
strategy is discussed in [37].

From the results of the microscale model, we can extract the needed value of stress
using the Irving-Kirkwood formula:

τ̃ (y, t;x) = −
∑

i

(mivi ⊗ vi)δ(ri − y)

−1

2

∑

j 6=i

((ri − rj) ⊗ fij)

∫ 1

0

δ (λri + (1 − λ)rj − y) dλ
(23)

where vi = ṙi −Ari is the thermal velocity of the i-th particle, fij is the force acting
on the i-th particle by the j-th particle.

In summary, three main ingredients are required in using HMM:

1. a macro-solver, here the projection method;

2. a micro-solver, here the constrained molecular dynamics;

3. a data estimator, here the Irving-Kirkwood formula.

Next we consider the application of HMM to ODEs with multiple time scales.
Consider the system [44]







Ẋε = f(Xε, Y ε, ε), Xε(0) = x

Ẏ ε =
1

ε
g(Xε, Y ε, t/ε, ε), Y ε(0) = y

(24)

where (x, y) ∈ R
n × R

m. Here the macroscale variable of interest is X. We will
assume that its dynamics is approximated accurately by an ODE of the form:

˙̄X = B(X̄), X̄(0) = x (25)

Since the macroscale equation takes the form of an ODE, we will select stable ODE
solvers as the macro-solver. This suggests a HMM that consists of the following:

1. The macro-solver:

X̂n+1 = X̂n + B̂(X̂n, ε)∆t, X̂0 = x, (26)

where ∆t is the macro-time-step, and B̂(x, ε) denotes the approximate value of
B(x) which needs to be estimated at each macro-time-step.
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2. The micro-solver: This is obtained by considering the second equation in (24)
with x = X̂n. In the simplest case of a forward Euler scheme with micro-time-
step ∆τ , we have

Ẑε
n,m+1 = Ẑε

n,m + g(Ẑε
n,m, m∆τ, ε)∆τ. (27)

By considering only the second equation in (24), we automatically constrain the
macro variable X.

3. An estimator: In the simplest case, we may use time-averaging:

B̂(X̂n, ε) =
1

M

M−1
∑

m=0

f(X̂n, Ẑ
ε
n,m, ε). (28)

Of course, more sophisticated data processing techniques can be used [18].

If the ODE has a stochastic component, then the macroscale model might be in
the form of stochastic ODEs. In this case, one should use a stochastic ODE solver as
the macro-solver. The simplest example is the Euler-Maruyama scheme:

X̂n+1 = X̂n + B̂(X̂n, ε)∆s+ σ̂(X̂n, ε)∆Wn, (29)

The data that need to be estimated are B̂ and σ̂. This can be done in a similar way
as described above. The detailed formulas can be found in [44].

5.2 A unified view of some existing multiscale algorithms

HMM was partly motivated by the desire to provide a unified view for some of the
existing multiscale algorithms. This is partly successful. Indeed the presentation in
section 2 is already influenced by the HMM viewpoint. Let us now reexamine the
algorithms in section 2 from a HMM perspective.

The Born-Oppenheimer dynamics can now be viewed as a special case of HMM in
which the macro solver is the molecular dynamics algorithm chosen for (3), the data
to be estimated is the forces acting on the nuclei, and data estimation is done through
an iterative algorithm for the electronic structure model. For local QC, the macro
solver is the piecewise linear finite element method, the data to be estimated is the
energy associated with the trial function or the forces on the representative atoms.
Data estimation can be done either using Cauchy-Born rule or by summing the inter-
atomic potential over small clusters of atoms around the representative atoms. For
the kinetic scheme, the macro solver is the finite volume method. The data to be
estimated are the numerical fluxes and data estimation is done by solving the kinetic
equation locally around the point of interest.

Considering the fact that these algorithms are proposed for drastically different
applications, this unified view is interesting. It also offers some substances.
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1. One may use the framework for analyzing the stability and accuracy of HMM
to analyzing the accuracy of these existing methods. An example is done in [14]
for analyzing the local QC.

2. HMM provides an alternative perspective on how to improve these existing
methods. For example, if we are interested in developing high order kinetic
schemes, we might start with a higher macro solver and solve the microscale
model to higher order accuracy. This may not be that different from what
experts in kinetic schemes would do anyway. But it does make the ideas a bit
more systematic.

There is one very notable exception though, and that is the Car-Parrinello molec-
ular dynamics. As we will discuss at the end of this paper, most algorithms discussed
in this paper use a “multi-grid” style of macro-micro coupling, i.e. the “interpolation-
equilibration-projection” procedure, except CPMD which is much more seamless. In-
deed extending the seamless coupling procedure in CPMD is one of the motivation
for developing the general seamless coupling strategy in [17].

5.3 Modifying traditional algorithms to deal with multiscale

problems

HMM can be viewed as a philosophy for modifying traditional numerical algorithms
for the purpose of handling efficiently multiscale problems. To illustrate this point,
we will discuss two examples.

The FMM-HMM. Fast multipole method (FMM) is among the most effective
algorithm for evaluating the Coulomb potential due to a distribution of charges [26].
Consider the following problem:

φ(x) =

∫

Ω

q(y, y

ε
)

|x − y|dy (30)

Here q is a smooth function which is periodic in the second variable with period
I = [0, 1]d and ε << 1. Problems of this type arise in analyzing the electronic
structure of solids [13]. Applying FMM directly to the evaluation of φ will require a
cost of O(ε−d) in d dimension, since the smallest boxes used in FMM should resolve
the smallest scale of q, which is of O(ε). A much more efficient approach is to combine
FMM with HMM [29].

In the spirit of HMM, we select FMM as the macroscale solver. The data that are
needed in FMM are the coefficients of multipole expansion:

Mp
k,j =

∫

Ck,j

q(y,
y

ε
)(y − xk,j)

pdy
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where (Ck,j,xk,j) =j-th (box, box-center) at the k-th level. They can be approxi-
mately evaluated using, for example:

Mp
k,j ≃

∫

Ck,j

∫

I

q(y, z)(y − xk,j)
pdydz

In this way, the total cost is O(1).
The approach described above is not necessarily the most efficient or accurate

way of evaluating φ defined in (30). Nevertheless, this example serves as a good
illustration of how to modify traditional algorithms for multiscale problems, based on
the HMM philosophy.

Finite element HMM. Consider an elliptic equation with multiscale coefficients:

{

− div
(

a ε(x)∇uε(x)
)

= f(x) x ∈ D ⊂ R
d,

uε(x) = 0 x ∈ ∂D.
(31)

Here ε is a small parameter that signifies explicitly the multiscale nature of the
coefficient a ε(x): It is the ratio between the scale of the microstructure and the scale
of the physical domain D.

We are interested in capturing the macroscale behavior of the solution to this
problem. Abstract homogenization theory tells us that the macroscale component of
the solution satisfies an effective equation of the form:

− div
(

A(x)∇U(x)
)

= f(x) x ∈ D (32)

where A(x) is the effective coefficient at the macroscale. If these coefficients are
explicitly known, we may apply the finite element method directly to (32). In cases
when these coefficients are not explicitly known, we may proceed as follows, in the
spirit of HMM.

As macro-solver, we use the standard finite element method. As the simplest
choice, we will use the standard C0 piecewise linear element, on a triangulation TH

where H denotes the element size. We will denote by XH the finite element space.
The size of the elements should resolve the macroscale computational domain D, but
they do have to resolve the small scales.

The needed data is the stiffness matrix for the finite element method:

A = (Aij) (33)

where

Aij =

∫

D

(∇Φi(x))TAH(x)∇Φj(x) dx (34)

and AH(x) is the effective coefficient (say conductivity) at the scale H , {Φi(x)} are
the standard nodal basis functions of XH . Had we known AH(x), we could have
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K

Figure 5: Illustration of HMM for solving (31). The dots are the quadrature points. The

little squares are the microcell Iδ(xℓ).

evaluated (Aij) by numerical quadrature. Let fij(x) = (∇Φi(x))TAH(x) · ∇Φj(x),
then

Aij =

∫

D

fij(x)dx ≃
∑

K∈TH

|K|
∑

xℓ∈K

wℓfij(xℓ) (35)

where {xℓ} and {wℓ} are the quadrature points and weights respectively, |K| is the
volume of the element K. Therefore the data that we need to estimate are the values
of {fij(xℓ)}. This will be done by solving the original microscopic model, properly
reformulated, locally around each quadrature point {xℓ}, as shown in Figure 5.3.

For the micro-solver, let ϕε
i be the solution of the following problem

−div(aε(x)∇φε(x)) = 0 on Iδ(xℓ) (36)

with boundary condition

aε(x)
∂φε

∂n
= λT n̂ on ∂Iδ(xℓ) (37)

where λ is the Lagrange multiplier for the constraints that 1
δd

∫

Iδ(xℓ)
∇φε dx = (∇Φi)(xℓ),

n̂ is the outward normal on ∂Iδ(xℓ). Alternatively, we may use the periodic boundary
condition: φε(x) − Φi(x) is periodic with period Iδ(xℓ).

From the solution to the microscale problem, we estimated the needed data fij(xℓ)
by

fij(xℓ) ≃
1

δd

∫

Iδ(xℓ)

(∇ϕε
i (x))Taε(x)∇ϕε

j(x) dx (38)

Knowing {fij(xℓ)}, we obtain the stiffness matrix A by (35).
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5.4 Stability and accuracy

Because HMM is a macro-solver-based philosophy, it comes with a nice framework
for carrying out stability and accuracy analysis. Of course, for this purpose we have
to limit ourselves to cases when we do have good analytical control of the effective
macroscale model. The basic idea, as explained in [9], is to compare the HMM solution
with the solutions of the selected macroscale solver for the effective macroscale model.
Their difference is caused by the fact that the HMM solution contains an additional
error due to the fact that some quantities in the macroscale model are estimated
from microscale models, not from some explicit analytical model. This new error
term is called the HMM error, denoted by e(HMM). Under fairly general conditions
(basically the stability of the macro-solver), one can prove [9]

‖U − UHMM‖ ≤ C
(

Hk + e(HMM)
)

(39)

where U is the solution of the effective macroscale model, H is the macroscale grid
size. The first term on the right hand side is the conventional error of the macroscale
solver applied on an explicit macroscale model. The second term is the additional
error term due to the HMM procedure.

The key in getting concrete error estimates and thereby giving guidelines in con-
structing multiscale methods lies in the estimation of e(HMM). However, this is very
specific to each problem.

For the elliptic problem discussed above,

e(HMM) = max
xℓ∈K
K∈TH

‖A(xℓ) − Ã(xℓ)‖,

where Ã(xℓ) is the estimated coefficient at xℓ using (35) and (38), A(xℓ) is the coef-
ficient of the effective model. We have

Theorem 1. Assume that (31) and (32) are uniformly elliptic. Denote by U0 and
UHMM the solution of (32) and the HMM solution, respectively. If U0 is sufficiently
smooth, then there exists a constant C independent of ε, δ and H, such that

‖U0 − UHMM‖1 ≤ C
(

Hk + e(HMM)
)

, (40)

‖U0 − UHMM‖0 ≤ C
(

Hk+1 + e(HMM)
)

. (41)

Here ‖u‖1 and ‖u‖0 are standard H1 and L2 norms of u respectively.
This result is completely general. It does not require specific assumptions on the

structure of the coefficients in (31). However, to estimate e(HMM) quantitatively,
we need to make specific assumptions on the structure of the coefficients in (31). In
general, if we assume that aε(x) is of the form a(x,x/ε), then we have

|e(HMM)| ≤ C
(ε

δ

)α

(42)
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where δ is the size of the computational domain for the microscale problem. The value
of the exponent α depends on the rate of convergence of the relevant homogenization
problem as well as the boundary conditions used in the microscopic problem. Some
interesting results are obtained in [16] but there are still many open questions.

6 Discussions

6.1 Comparison between the three approaches

It is clear from these descriptions that there are many similarities between RMG,
HMM and the “equation-free” approach.

1. They all evolve the macro state variable with the help of the micro model.

2. They all involve mapping between the macro and micro states, even though they
use different terminologies (see Table 1). Incidently, “lifting” is an unfortunate
terminology, since in multiscale modeling, we typically place macroscale models
above, and microscale models below. Using “lifting” this way gives the wrong
sense of direction. (In a similar context, it should be noted that “lifting schemes”
are used in wavelet analysis for computing wavelet transforms from smaller to
larger scales [42]).

3. They all make use of scale separation by restricting the simulation of the mi-
croscale model on small domains (boxes, windows) for short times (or few
sweeps).

Moreover, the basic structure for RMG is remarkably close to that of the “equation-
free” approach, as can be seen in Table 2. Note in particular that the purpose of
the “evolution” step in “equation-free” is to equilibrate. The main new component
added by the “equation-free” approach is the extrapolation step: Computing time
derivative of the macro variables from microscale models and use that to extrapolate
the macro variables for a large time step.

Macro to micro micro to Macro
RMG interpolation restriction (projection)
HMM reconstruction compression
Equation-free lifting restriction

Table 1: A comparison between the terminologies used in RMG, HMM and
“equation-free”.
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RMG “Equation-free”
Interpolation Lifting
Equilibration Evolutions (equilibration)
Restriction (projection) Restriction

Extrapolation

Table 2: A comparison between the basic structure of RMG and “equation-free”.

Are there any differences? Even though the details of RMG are sometimes unclear,
it is clear that they are based on a multi-grid strategy. Whether there are differences
between HMM and “equation-free” depends on which version of “equation-free” we
consider. The motivating question for HMM has been: How can we best integrate our
knowledge about both the macro model and the micro model? At the initial stage,
the focus of the “equation-free” approach was quite the opposite: What can we do
if we do not have any explicit knowledge about the macro and micro model? Indeed
one of the main motivation for “equation-free” was to handle legacy codes. HMM
has always been a “top-down” approach. Its starting point is a macro model and a
macro-solver. In other words, HMM is more of an “equation-based ” technique, even
though it does not require all the details about the equation. The original description
of “equation-free” seemed more of a “bottom-up” strategy. It tries to “fool” the
microscopic model to perform macroscopic tasks. One clear example is the gap-tooth
scheme in [23] discussed earlier. The main thrust there was to couple the different
microscopic simulations on small boxes in order to mimic a microscopic simulation
performed over the entire physical domain. However, recent versions of “equation-
free” are becoming closer and closer to HMM. In fact, as we will see later, the new
“projective integration scheme” in [24] is exactly HMM.

To be precise, let us consider a simple ODE example:

dx

dt
= f(x, y),

dy

dt
= −1

ε
(y − φ(x)) (43)

This is the case for which “equation-free” and HMM are the closest. Here clearly x
is the slow variable, y is the fast variable. The effective macroscale model should be
of the form:

dx

dt
= F (x) (44)

At each macro time step, HMM with forward Euler as the macro-solver proceeds as
follows:

1. Initialize the micro-solver, e.g. yn,0 = yn−1,M .

2. Apply the micro-solver:

yn,m+1 = yn,m − δt

ε
(yn,m − ϕ(xn)) (45)

for m = 0, 1, · · · ,M − 1.
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3. Force-estimator:

F n =
1

M

M
∑

m=1

wm,nf(xn, yn,m) (46)

where {wm,n} is a set of weight coefficients. To facilitate comparison with
“equation-free”, let us simply take:

F n = f(xn, yn,M) (47)

4. Evolve macro-solver:
xn+1 = xn + ∆tF n (48)

Combining (47) and (48), we get:

xn+1 = xn + ∆tf(xn, yn,M) (49)

One macro step of “equation-free” would proceed as follows:

1. Initialize the micro-solver, now the whole system (43), e.g. xn,0 = xn, yn,0 =
yn−1,M .

2. Apply the micro-solver:

xn,m+1 = xn,m + δtf(xn,m, yn,m), yn,m+1 = yn,m − δt

ε
(yn,m − ϕ(xn)) (50)

for m = 0, 1, · · · ,M − 1.

3. Restrict: This means computing the values of the macroscopic variables that
corresponds to {(xn,m, yn,m)}. In this case, this simply means taking the x-
component.

4. Extrapolate: A first order extrapolation is simply

xn+1 = xn + (∆t−Mδt)
xn,M − xn,M−1

δt
= xn + (∆t−Mδt)f(xn,M−1, yn,M−1)

(51)

The main difference in this version of HMM and “equation-free” differ mainly in
whether the micro solver is constrained and where f is evaluated. However, if the
microscale model is more complicated, for example, if the small scale feature is os-
cillatory in nature or has stochastic fluctuations, then the treatment of HMM and
“equation-free” would be quite different:

1. HMM uses a suitably chosen macroscale solver according to the expected form
of the macro model; “equation-free” uses polynomial interpolation [27].
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2. HMM uses sophisticated averaging techniques in the micro solver to extract the
needed macroscale data, whereas “equation-free” uses ensemble averaging to
obtain the macro variables at the micro time steps to be used for extrapolation.

One clear example is the case when the y-component of the equation is changed to

dy

dt
= − i

ε
(y − φ(x)) (52)

In this case, one can still develop very accurate HMM techniques for capturing the
dynamics of the slow component [18]. It is not clear at all what one can do with
“equation-free”.

It is also interesting to note that since “equation-free” is based on a time-stepper
strategy, it is not clear how to apply it to purely static problems. For example, it
is not clear how to develped “equation-free” based QC or finite element methods for
elliptic problems without adding artificial dynamics.

6.2 Difficulties with RMG

While the general philosophy is quite clear and very attractive, there are still questions
about how these ideas should be implemented for concrete practical problems. The
most extensively discussed example in [3] is the example of using atomistic models to
capture the macroscale behavior of complex fluids. However, even for this example, it
is not clear what the details of the algorithms are. This does not necessarily mean that
there are essential difficulties in applying Brandt’s ideas. It is simply an indication
that algorithmic and practical issues can be quite significant and require a lot of
efforts.

6.3 Difficulties with HMM

The most significant shortcoming of HMM is that it is based on a presumed macroscale
model. If the assumed form is incorrect, one can not expect the resulting HMM
procedure to produce accurate results. For example, if the effective macroscale model
should be a stochastic ODE, but one makes the assumption that it is a deterministic
ODE, the stochastic component of the macroscale solution will not be captured by
the HMM based on such an assumption. Because of this, HMM does not completely
avoid making ad hoc assumptions about the macroscopic model.

For practical problems of interest, we often have accumulated some knowledge
about how the macroscale model should be like. Such information can be used when
making an assumption about the macroscale model used in HMM. In cases when
one makes a wrong assumption, one can still argue that HMM produces an “optimal
approximation” for the macroscale behavior of the solution in the class of models
considered. This philosophy bears some resemblence to that of the “optimal predic-
tion” proposed by Chorin et al. [7]. In this sense, HMM is a way of addressing the
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question: What is the best we can do given the knowledge we have about the problem
at all scales?

6.4 Difficulties with the “equation-free” approach

The most important problem with “equation-free” is the lack of a clear unifying
principle. While RMG has been developed as an extension of the multi-grid method,
HMM has been developed as a macro-solver-based top-down coupling procedure, there
are no clear fundamental principles for “equation-free”. At the present time, it stands
more as a collection of papers, or the collected work of its developers.

Indeed, there are non-trivial logical inconsistencies in the “equation-free” papers:

1. The name “equation-free” suggests that it bypasses the need of using macroscale
equations. This was clearly the intention in earlier papers and talks on “equation-
free”, and indeed the main selling point. (Recall that an earlier name for
“equation-free” was “solving equations without equations”). However, as we
will see below, not only the recent versions of “equation-free” clearly require the
form of macroscale equations, as in HMM, a substantial number of the papers
(for examples papers on free energy calculations such as [19], see below) simply
did precomputing, i.e. sequential coupling, which are typical “equation-based”
techniques and should have been the opposite philosophy of “equation-free”.
But they are still called “equation-free” in these papers.

2. How do we treat the boundary conditions for the microscale solver? This is com-
monly regarded as the most important technical issue in multiscale modeling.
Two radically different proposals have been made in “equation-free” papers.
The first is just to ignore the issue [38, 39]. The argument is that if we choose
the microscale computational domains sufficiently large, then boundary con-
ditions do not matter. The second proposal is to design boundary conditions
that couple all the microscopic simulations in small boxes together, in order to
mimic a microscopic simulation done on the whole domain. The only existing
example of this kind is presented in [23]. This of course, makes the microscopic
simulations much more complicated. We do not expect unified answers to the
question of boundary conditions. The trouble with “equation-free” is that there
is really no clear indication what the philosophy is supposed to be, and very
few constructive suggestions on this important issue.

In the rest of this section, we will explain these points in detail.
A very important component of “equation-free” is the “lifting” operator. This is

the analog of the interpolation operator in multi-grid method or the reconstruction
operator in HMM. Their purpose is to reinitialize the microscale solver. In RMG
and HMM, the only requirement on the reinitializd micro-states is consistency with
the local macro-states. “Equation-free” requires a lot more for its reinitialization
procedure, as we see below.
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In [27, 38], the following lifting procedure was proposed: In the small domain
around the macro grid point xj , use the approximate Taylor expansion:

ũ0(x) =

d
∑

k=0

1

k!
Dk(x− xj)

k (53)

Here Dk is some approximations to the derivatives of the macroscale profile at xj , for
example:

D2 =
Un

j+1 − 2Un
j + Un

j−1

∆x2
, D1 =

Un
j+1 − Un

j−1

2∆x
, D0 = Un

j − 1

24
h2D2 (54)

It was pointed out in [15] that if this lifting operator is used for studying the simple
advection equation:

∂tu+ ∂xu = 0 (55)

then patch dynamics gives rise to the following scheme:

Un+1 = Un + ∆t(−D1 +
1

2
δtD2) (56)

Since δt ≪ ∆t, the last term is much smaller than the other terms, and we are left
essentially with a scheme which is unstable under the standard CFL condition that
∆t ∼ ∆x:

Un+1 = Un − ∆tD1 (57)

due to the central character of D1.
Aside from the stability issue, there can also be problems with consistency. Con-

sider the following example:
∂tu = −∂4

xu (58)

The macroscale model is obviously the same model. However, it is easy to see that
if we follow the patch dynamics procedure with d = 2, we would be solving ∂tU = 0,
which is obviously inconsistent with the correct macroscale model.

These problems are fixed in the new version of patch dynamics [39]. In this new
version, one assumes a macro model of the form:

∂tU = F (U, ∂xU, · · · , ∂d
xU, t)

and chooses a “method-of-lines discretization” of this macro model:

∂tUi = F (Ui, D
1(Ui), · · · , Dd(Ui), t)

Here Dk(U) is some suitable finite difference discretization of ∂k
xU . For example, for

advection equation, one should use some one-sided discretization. The operator Dk

is then used in the lifting operator:

ūi
ε(x, t

n) =
d

∑

k=0

Dk
i (Ū

n)
(x− xi)

k

k!
, x ∈ [xi −

H

2
, xi +

H

2
]
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This version of “equation-free” approach does overcome the difficulties discussed
above, but it also means that the reinitialization process not only has to take into
account consistency with the local values of the macro variables, but also the some
charateristics of the unknown macroscale model, such as the order of the macro equa-
tion, the direction of the wind if the macroscale model happen to be a first order
equation; and we do not know what else needs to be taken into account. This is
heavy lifting indeed.

This modification makes “patch dynamics” a strictly less useful tool than HMM.
It has the same shortcomings as HMM, namely it relies on a presumed macro model
and a macro solver. However, unlike HMM which has the freedom to use known
macroscale information in the macro solver, the macroscale information in this patch
dynamics is taken into account in a convoluted way through the lifting operator.

As an example of the difference between “equation-free” and HMM, let us consider
how to capture macroscopic gas dynamics using molecular dynamics [11]. HMM
would simply start with the macro model:

∂tU + ∇ · F = 0

where U is the mass, momentum and energy density, and use a finite volume method
as the macro solver. In this case, one should choose a finite volume scheme that relies
less on the details of the macro model. One possible choice is the Lax-Friedrichs
scheme. The fluxes needed are then estimated from molecular dynamics, constrained
so that the total mass, momentum and energy have the right values consistent with
the local values of U . The fluxes can then be estimated using the Irving-Kirkwood
formula. The overall strategy is quite similar to that of the kinetic scheme, except
that the kinetic model is replaced by molecular dynamics. Numerical results can be
found in [11].

It is not at all clear how to handle this problem in the “equation-free” approach.
For one thing, it requires knowing the direction of the macroscale waves in the lifting
step. It is also unclear how it can overcome the difficulties with shocks.

6.5 What are projective integrators?

The earlier papers on projective integration [22, 30, 27] made it clear that projective
integrators are based on the idea of extrapolation. Time derivatives for the coarse
variables are computed using the microscopic solver and used to extrapolate the
coarse variables for large time steps. Indeed the first paper on projective integrators
stated that [22]: “The reader might think that these should be called ‘extrapolation
methods’, but that name has already been used [...]. Hence we call the proposed
methods projective integration methods.”

However, in a recent paper [24] dealing with stochastic ODEs with multiple time
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scales:

dxε
t = a(xε

t , y
ε
t )dt+ b(xε

t , y
ε
t )dUt (59)

dyε
t =

1

ε
f(xε

t , y
ε
t )dt+

1√
ε
g(xε

t , y
ε
t )dVt (60)

the authors analyzed the following version of the “projective integration scheme”:

1. “Xn is evolved in time by an Euler-Maruyama step,

Xn+1 = Xn + A(Xn)∆t+B(Xn)∆Wn

where ∆Wn are Brownian displacements over a time interval ∆t. We refer to
(1.4) as the macro-solver (or, macro integrator)”.

2. “The numerical solver used to generate the sequence Y n
m is called the micro-

solver (or micro-integrator). The simplest choice is again the Euler-Maruyama
scheme,

Y n
m+1 = Y n

m +
1

ε
f(Xn, Y

n
m)δt+

1√
ε
g(Xn, Y

n
m)∆V n

m

where ∆V n
m are Brownian displacements over a time interval δt”.

3. “Having generated the trajectories Y n
m, the functions ā and b̄ are estimated by

A(Xn) =
1

M

M
∑

m=1

a(Xn, Y
n
m)

B(Xn)BT (Xn) =
1

M

M
∑

m=1

b(Xn, Y
n
m)bT (Xn, Y

n
m)′′

This “macro solver – micro solver –data estimator” strategy is clearly a HMM strategy,
and is quite different from the extrapolation-based strategy of the original projective
integration scheme. Indeed the algorithm discussed in [24] is basically the same
as the one introduced in [44]. Throughout the paper, there is no mentioning of
extrapolation. The analytical results obtained are still quite interesting but the misuse
of the terminologies can easily lead to further confusion about what “equation-free”
really is.

There is a reason why the authors abandoned the original extrapolation-based
philosophy of projective integrators, and this has been pointed out in [15]. Basically
if one follows the extrapolation strategy, then either the numerical solution converges
to the wrong limit, or the numerical parameters have to have the right balance in
which case there is no saving compared with solving the original problem using a
brute force approach.
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6.6 “Equation-free” or “equation-based”?

It is well-known that there are two class of techniques for multiscale coupling: Se-
quential coupling and concurrent coupling [1, 10]. In sequential coupling, one assumes
a form of the macroscale model which contains some unknown components such as
unknown coefficients, these are then obtained through the microscale model by pre-
computing. This is a typical “equation-based” multiscale technique that has been
commonly used, perhaps ever since modeling became a series tool. At the very mini-
mum, one would expect “equation-free” to be an alternative to such “equation-based”
precomputing techniques. However, in many “equation-free” papers, particularly the
ones on free energy calculations (see e.g. [19, 30]), what was done was to first pre-
compute the drift V (q) and diffusion coefficient D(q) using microscopic simulations
and then solve the Fokker-Planck equation

∂q(∂q[D(q)f(q)] − V (q)f(q)) = 0

to get the steady state (or equilibrium) probability distribution f and the free energy
using Φ(q) = −kBT log f(q). This is still called “equation-free”, even though it is a
standard precomputing procedure that has been around for many years. After all,
this is not very different from precomputing the equation of state of a gas and then
using Euler’s equation to study gas dynamics.

Aside from such extreme examples, as remarked earlier, the recent version of patch
dynamics is also “equation-based”, i.e. one has to start with an assumed macro model
and macro solver.

Some “equation-free” developers might argue that they do not need any precon-
ceived notion of what the macroscale model might be like, they can extract such
information using the microscale model, as is done in the “baby-bathwater scheme”
[32], which is a scheme about finding the order of the highest derivative in the effec-
tive macroscale model using microscale simulation. This is an interesting idea, which
is an extension of the well-known ideas that people have used to find out whether a
system behaves convectively or diffusively by computing the effective diffusion con-
stants. However, putting aside questions about whether the algorithms proposed in
[32] actually work (see [15] for some discussions), there are some important philosoph-
ical issues. For example, in order to extract such macroscale information, one has to
design a series of preconceived tests on the microscopic model. These preconceived
tests have already limited the effective macroscale model to some preconceived form.
Therefore, in the end, this approach is not very different from the “equation-based”
approach described earlier.

7 Conclusion

We have seen that the general philosophies of RMG, HMM and the “equation-free”
approach are all quite similar. In addition, the structure of RMG and “equation-
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free” is very close (see Table 2). The real advance made in “equation-free” over
RMG is in coarse projective integration, i.e. the “extrapolation” step. For a large
class of problems for which the effective macroscopic dynamics is deterministic, this
is a simple but effective strategy for overcoming the numerical difficulty with time
scale separation. As for spatial dependence, “equation-free” basically took the same
viewpoint, except to say that the microscopic simulation is supposed to be done on
small boxes. However, it is not clear how these microscopic simulations on small
boxes are supposed to be set up. In this regard, it has not gone significantly beyond
RMG.

The strategy of HMM is to put all these under a macroscale solver. Within
HMM, the microscale simulations are independent and are indeed decoupled from the
macroscopic computational domain: One can think of them as been done on some
“virtual” space. The HMM strategy is not ideal: It relies on some assumpations
about how the macroscale model should look like. These assumptions are not only
used in selecting the macroscale solver, but also used in formulating the constraints
on the microscopic solver. The HMM strategy represents a compromise: Ideally one
would like to avoid completely such assumptions, but at the present time, that does
not seem to be feasible in general.

7.1 Top-down vs. bottom-up coupling

For the class of problems we are interested in here, as long as we have selected the
right set of macroscale variables, we can always write down the effective macroscale
model in the form of

∂tU = F ({U}, x, t)
or some discrete analog. The real question is how much do we need to know about the
specific form of F . One viewpoint, which seems to be the underlying principle of in the
early “equation-free” papers with the exception of the papers on the baby-bathwater
scheme [32], is that it is really not necessary to know the form of F , all we need is
a way to compute Ut, and this can be done using the microscale model. It is not
difficult to see that the “time-stepper” ideas, the coarse bifurcation methods, and the
projective integrators are all developed along this line of thought. In space, the role
of “extrapolation” is replaced by “interpolation”. The initial idea of the “gap-tooth”
scheme was to design an array of coupled microscale simulations on small boxes, linked
together by interpolation and boundary conditions, to mimic a microscale simulation
on the whole physical domain. This is indeed a “bottom-up” strategy, and it would
be very interesting to see how far one can go with this and what class of problems
can be handled with such a strategy.

HMM took the viewpoint that on one hand for most problems of interest, we
have already gathered a lot of information about how F should be like; on the other
hand, even if we do know the macroscale model completely, solving it numerically
can be a very non-trivial task (think about numerical methods for solving nonlinear
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conservation laws). This motivated the macro solver-based HMM strategy, which is
a “top-down” strategy. This top-down strategy is not just useful for HMM, it is also
useful for other approaches such as the seamless coupling method proposed in [17].

7.2 Multi-grid style of coupling vs. seamless coupling

With the exception of the Car-Parrinello method, the methods we discussed in this
note use the “multi-grid” style of coupling, by which we mean that they require con-
verting explicitly between macro and micro states using the reconstruction (lifting,
interpolation) and compression (projection, restriction) operators, at each macro cy-
cle. While this is quite natural, it can become a rather difficult step in practice,
particularly when reinitializing the microscale model given the values of the macro
variables. This is no longer necessary in the new seamless strategy proposed in [17],
which is more in the spirit of the Car-Parrinello method.

7.3 Sequential vs. concurrent coupling

What we have discussed so far are mostly concurrent strategies to multiscale modeling.
Naturally they should be compared to the sequential strategies. The usual argument
against sequential strategies are:

1. It requires a preconceived form for the macro model.

2. It is too expensive to precompute the needed information from the microscale
model.

For the first point, as we remarked earlier in this section, the recent work on HMM
and “equation-free” still requires some preconceived form of the macroscale model,
although usually to a lesser degree than needed in most existing precomputing strate-
gies. As for the second point, it is possible to develop rather efficient precomputing
strategies. One strategy pursued in [21] is the use of sparse grids. With that it
becomes quite feasible to precompute constitutive relations that depend on 5 or 6
variables. Currently, none of the examples in the HMM or “equation-free” papers
have gone beyond that. In fact, in most concrete examples the constitutive relations
depend on very few variables and can be easily precomputed. This does not mean
that HMM and “equation-free” are useless, it is simply one benchmark that we should
always keep in mind.
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